
134 D Y N A M I C A L  E F F E C T S  IN E L E C T R O N  D I F F R A C T I O N  

COWLEY, J. M. & MOODIE, A. F. (1957). Acta Cryst. 10, 
609. 

DAWSON, B. (1967). Proc. Roy. Soc. A298, 255, 379. 
DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 

390. 
FISHER, P. M. J. (1968). Jap. J. Appl. Phys. 7, 191. 
FUKUHARA, A. (1966). J. Phys. Soc. Japan, 21, 2645. 
GOODMAN, P. & LEHMPFUHL, (3. (1964). Z. Naturf. 19a, 

818. 
GOODMAN, P. & LEHMPFUHL, G. (1967). Acta Cryst. 22, 

14. 
GOODMAN, P. & MOODIE, A. F. (1965). Papers in Interna- 

tional Conference on Electron Diffraction and Defects in 
Crystals, Melbourne. 

HEIDENREICH, R. D. & STURKEY, L. (1945). J. Appl. Phys. 
16, 97. 

HIRSCH, P. B., How-rE, A., NICHOLSON, R. B., PASHLEY, 
n .  W. t~ WHELAN, M. J. (1965). Electron Microscopy of 
Thin Crystals. London: Butterworths. 

HOWIE, A. t~ WHELAN, M. J. (1961). Proc. Roy. Soc. A263, 
217. 

MACGILLAVRY, C. H. (1940). Physica, 7, 329. 
POGANY, A. P. & TURNER, P. S. (1968). Acta Cryst. A24, 

103. 
STURKEY, L. (1948). Phys. Rev. 73, 183. 
UYEDA, R. (1968). Acta Cryst. A24, 175. 
VAINSHTEIN, B. K. (1964). Structure Analysis by Electron 

Diffraction. Oxford: Pergamon Press. 
WATANABE, D., UYEDA, R. & KOGmO, M. (1968). Acta Cryst 

A24, 249. 
WATANABE, D., UYEDA, R. & FUKUHARA, A. (1968). 

Acta Cryst. A24, 580. 

Acta Cryst. (1969). A25, 134 

An Accurate Absolute Scattering Factor for Silicon 

D2"4 

BY M. HART AND A.D. MILNE 

H. H. Wills Physics Laboratory, University of Bristol, Bristol, England 

The 220 Bragg reflexion of silicon has been studied in considerable detail. By the Pendell6sung fringe 
method we have measured the atomic scattering factor with an internal consistency of better than 0.1%. 
Particular care was taken to exclude systematic errors which might arise from elastic strain, X-ray 
absorption and X-ray polarization effects. The crystal was cut parallel to the Bragg planes at the points 
of observation so that its thickness could be directly measured with a travelling microscope. At the value 
of sin 0/2 corresponding to the 220 Bragg reflexion, the experimental atomic scattering factors (at 20°C) 
were:f=8-478+0.008 for Mo K~t radiation; f=8.448+0.012 for Ag K~I radiation, and f (Mo Kcq)/ 
f (Ag K~I) = 1.0035 + 0-0007. 

Introduction 

Several authors have recently made measurements of 
X-ray structure factors by the Pendell/Ssung method 
(Kato & Lang, 1959; Hattori, Kuriyama, Katagawa & 
Kato, 1965; Hart, 1966; Hattori & Kato, 1966; Kato 
& Tanemura, 1967; Yamamoto & Kato, 1968; Batter- 
man & Patel, 1968). However, none of those authors 
were able to obtain absolute values of structure factors 
to better than 1%, even on favourable materials such 
as silicon. In the present measurements on the 220 
Bragg reflexion from silicon, we have obtained values 
of structure factors with deviations of less than 0.1% 
between separate experiments. Since this is the highest 
precision ever claimed for a structure factor measure- 
ment, we will describe the experimental technique in 
some detail. 

Such precision of course finds immediate applica- 
tions in studies of the electron distribution in crystals, 
in discussions of the relative merits of the various the- 
oretical models by which atomic scattering factors are 
calculated and in the evaluation of possible sources of 
systematic error in the more conventional techniques 
by which structure factors are measured. In this con- 

text it may be important to notice that the Pendel- 
16sung method involves only the coherent part of the 
X-ray scattering amplitude. 

Theory 

The spherical wave theory of diffraction by highly per- 
fect crystals has been thoroughly developed in a series 
of papers by Kato (1960, 1961a, b, 1968a, b). In addi- 
tion, the influence on Pendell/Ssung fringes of crystal 
imperfections, including elastic strains, has been in- 
vestigated both theoretically (Kato, 1964) and experi- 
mentally (Hart, 1966) in considerable detail. 

In the symmetric Laue case, with which we are ex- 
clusively concerned, the intensity field Ih of the Bragg 
reflected waves in the spherical wave case of a section 
pattern (Kato & Lang, 1959) is 

Ih=ArcZAg 2 cosec20{Jo(rc~oAgl)} 2 , (1) 

where A is a constant and 0 is the Bragg angle. J0 is 
the zero order Bessel function and 0 is the depth in 
the crystal measured along the net plane from the 
X-ray entrance surface (we are concerned only with 
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the intensity field along the net plane). A0 is given by 

2 cos 0 
A o -  C(xhXr,) ~ (2) 

where 2 is the X-ray wavelength and C is the polariza- 
tion factor which is 1 for a-case polarization and 
[ cos 201 for the 7~-case polarization. For the low order 
Bragg reflexions from silicon with Mo Kal and Ag Kal 
radiations we can write, with sufficient accuracy, 

(ZnZ~)&_ reX21Fnl 
nV " (3) 

re is the classical electron radius and Fn is the structure 
factor for the h-order Bragg reflexion from the unit 
cell whose volume is V. 

For those fringes which are not too close to the 
entrance surface of the crystal we may use the asymp- 
totic form of the Bessel function so that 

In=2rcAAg'Q -~ cosec20 sin 2 (g0Agl + -~-). (4) 

That this equation is essentially correct has been de- 
monstrated experimentally by Homma, Ando & Kato 
(1966) and by the present authors (1968). 

Unpolarized X-ray sources 
In our experiments we use a normal electron-excited 

X-ray tube so that we assume that the incident beam 
is essentially unpolarized. Explicitly including both 
principal polarization components, equation (4) can be 
developed as 

Ih=A'lsin2n (.0_ + ¼ ) + ] c o s 2 0 l s i n 2 r c ( ~  +¼)}.  

(5) 
Ag and A~ are the values of A0 obtained from equation 
(2) with C =  1 and C = I cos 201 respectively. Further, 
it is conceptually convenient to work in terms of A0 
the polarization-averaged value of A0, corresponding 
to C=½(1 +1 cos 201). We can define interference orders 
on the exit surface by 

t= ng A~ = n'~ A~ =~0A0, (6) 

where t is the crystal thickness. Consider now the test 
function 

Ioc sin2n (-~0 + ¼ ) .  (7) 

Its minima occur when the term in brackets is equal 
to an integer m. On the other hand, it is easily shown 
that extrema of In occur when (Q/zlo + 14) =m + 5m 
where 5m is calculated from equation (8) below: 

tan (2n6m)= tan [2n(m-¼) tan20] c°s220- 1 
cos220+ 1.  (8) 

The fringe shift 6m is zero if ½q cot20 = (m-¼) or, more 
familiarly, if 

(m-¼)=½q(1 +1 cos 201)/(1-1 cos 20])=qN 

where q is an integer (Hart, 1963; Hart & Lang, 1965; 
Hattori, Kuriyama & Kato, 1965). The minima of In 
occur near the fringe orders defined by the following 
scheme: 

0 < fi0 < ½N minima near ti0 = l -  ¼ 

[minima near fi0 = l+  ¼ 
. . . / i f  k is odd 

½(2k- 1)N < n0 < ½(2k + J)~v .]minima near n0 = l -  ¼ (9) 
[if k is even, 

and l is an integer. 

The influence of absorption 
The theory so far has not included absorption. Kato 

(1968a) has recently published the full spherical wave 
theory of Pendell6sung fringes in section patterns show- 
ing that small fringe shifts do occur if absorption is 
present. For minima the fractional change in fringe 
position Am/m is given by: 

Am/m = [zc(m - -  ¼ ) ] - 2 { / ¢ 0 7 ~ ( m  --¼) sinh2[Kzc(m --¼)] 
+½ sinh2[tc:n:(m - ¼)] 
-½xz(m-¼)  sirth [2xn(m-¼)]}. (10) 

The terms x and ~c0 are essentially the ratios of imag- 
inary to real parts of scattering factors. They are de- 
fined in Kato's paper referred to above. In the present 
experiments ~c and K0 are approximately 1 × 10 -2 and 
6 x 10 -3 for Mo Kcq and Ag Kcq respectively, so that 
these shifts are completely negligible. 

Elastic deformation 
Potentially the most serious error which may arise 

in Pendell6sung fringe measurements of X-ray struc- 
ture factors is that due to elastic strain. It is particu- 
larly insidious because homogeneous deformations can 
change the positions of fringes without altering their 
shapes (see for example Hart, 1966, Fig. 5). For small 
deformations in which the strain gradients are func- 
tions of the depth Q in the crystal and do not vary 
rapidly within planes of constant Q, the interference 
order n and the local fringe spacing A are given by 
(Hart, 1966; Kato, 1964): 

where 

n=n0(1 +~p2) (11) 

A =A0(1 +p2)-~ (12) 

St tan 0 
p -  C221Fn I (13) 

and S is determined by the strain field. These equations 
are strictly correct when the strain gradient is constant. 
For a particular low-angle Bragg reflexion, we can 
write approximately 

pocS 2 . (14) 

Equations (11) to (13) can be written in terms of 
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polarization averaged parameters with sufficient accu- 
racy for the present purpose. 

Sample preparation 

We have attempted to eliminate the parasitic fringe 
shifts mentioned in the previous section since, in prin- 
ciple, it is better to eliminate corrections than to be 
forced to make them. 

Shifts due to polarization 
To avoid fringe shifts caused by the overlap of the 

patterns for the two states of X-ray polarization we 
work only with crystal thicknesses near tq= qNzlo. For 
fringe shifts Om<0.01 we may use only Pendell6sung 
fringes with orders q N -  4 < ~o < qN+ 4 for Mo K~  
radiation and q N -  11 < ~o < qN+ 11 for Ag Kcq radia- 
tion (equation 8). For the 220 Bragg reflexion of sili- 
con, N is approximately 14 for Mo Kex and 23 for 
Ag Kel radiations. 

It is interesting to notice that, for small Bragg angles, 
tqocq)~-3 so that the set of thicknesses tq for Ag Kex 
radiation coincide almost exactly with the even mem- 
bers of the set of tq values for Mo Kcq radiation. Thus, 
on one sample we can take measurements under opti- 
mum conditions with two different X-ray wavelengths. 

Accordingly, a stepped wedge shaped specimen was 
prepared, the wedge angle being chosen so that each 
step contained approximately four fringes spaced 
roughly 1 mm apart on the wedge. The mean thick- 
nesses of the two steps were chosen near q = 1 and q = 2 
for the 220 reflexion of Ag Kel radiation. To avoid 
geometrical errors the (]'1 I) entrance surface of the 
wedge was normal to the 220 Bragg planes to within 1 
rain arc and the wedge edge was within 5 rain arc of 
the [1T2] direction. 

Elastic deformations 
By double crystal topography (Bonse & Kappler, 

1958; Bonse, 1961 ; Hart, 1968) we have found growth 
banding in the low oxygen float-zone dislocation-free 
silicon which we have been using for structure factor 
measurements. The bands are normal to the [Tll] 

growth axis of the crystal and have a spatial periodicity 
of approximately 100 pm with lattice parameter fluc- 
tuations Ad/d ~_ 1 - 2  x 10 -7. This elastic strain is harm- 
less in the dynamical sense (p = 0 in equations 11 and 
12) for all symmetric Laue-case reflexions in the [111] 
zone. Consequently we have chosen to use the 220 
Bragg reflexion and not any of the other available 220 
type reflexions from symmetry-related lattice planes. 
It is particularly advantageous if (T11) is chosen as the 
entrance surface. 

Experimental method 

We have used the method of section patterns (Kato & 
Lang, 1959) employing a ribbon beam of X-rays 10/tin 
wide with a small vertical divergence. The source to 
crystal distance was 75 cm. The wedge-shaped crystal 
was mounted on a slide so that section patterns could 
be obtained at known positions in the specimen with 
respect to a reference edge. Pendell6sung fringes were 
photographed on Ilford type L4 nuclear emulsion 
plates and at each observation position patterns were 
obtained both with Mo K~  and with Ag Kcq radiations. 

After the X-ray experiments were completed, the 
wedge was cut parallel to the Bragg planes at the places 
where section patterns had been obtained and the 
crystal thickness was directly measured with a travel- 
ling microscope. The positions of Pendell/Ssung minima 
were measured both with a microdensitometer on the 
original plates and by eye estimation on high contrast 
photographic enlargements of the original plates. There 
was no detectable systematic difference between the 
results obtained by the two methods. A complete col- 
lection of results is given in Table 1. 

From the local fringe spacing on the wedges and the 
measured crystal thickness, an approximate fringe 
order rig' was obtained by division for each Pendel- 
Itisung minimum. Then the exact fringe orders g0 were 
assigned, following the scheme of equation (9). The 
deviation Ir~0-~l was usually less than 0.2 and was 
never greater than 0.3. The Pendellrsung periodicity 
zI0 was then calculated from Ao=t/~o, equation (6). 
Since the only source of random error is in the thick- 

Table 1. Measured crystal thickness t lzm and assigned fringe orders no in the Pendell6sung fringe patterns 
at three separate positions A, B and C in the specimen 

~0 

MoK~I 
25.75 
26.75 
27.75 
28-75 
29"75 
Mean 

A B C 

t ~0 t A t ~o 
973 37"786 973 37"786 968 37"592 

1011 37"794 1013 37"869 1011 37"794 
1047 37"730 1050 37"838 1048 37"766 
1085 37"739 1088 37"843 1086 37"774 
1123 37-748 1123 37"748 1124 37"782 
37"760±0"024 37-817±0"040 37"742±0"060 

t/0 A B C 
Ag K~I t z~0 t dO t A0 
20.25 968 47"802 970 47.901 967 47"753 
21-25 1012 47"624 1016 47-812 1013 47-671 
22.25 1062 47"730 1067 47.955 1060 47"630 
23.25 1110 47.742 1115 47.957 1111 47"785 

Mean 47.725 + 0.050 47.906 ± 0.050 47.712 + 0.057 

52.75 
53.75 
54.75 
55.75 
Mean 

1992 37.763 1999 37.896 1992 37.763 
2030 37.767 2033 37.823 2029 37.749 
2068 37.772 2070 37-808 2068 37.772 
2109 37.830 2103 37-722 2106 37.776 
37.783 ±0.023 37-812±0.047 37.765±0.009 

41"75 1994 47"760 2001 47.928 1993 47"737 
42.75 2037 47"649 2042 47.766 2040 47"719 
43.75 2087 47.703 2084 47.634 2089 47.749 

Mean 47-704±0.028 47.776± 0.101 47.735±0.011 
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ness calibration, we have weighted the results giving 
double weight to the thick crystal measurements so that 

zi0 = 37.78 + 0.04/zm for Mo Kcq 
zi0=47.75 + 0.07/zm for Ag Kea. 

These correspond to" 

f =  8.478 + 0.008 for Mo Kcq 
f =  8.448 + 0.012 for j A g  Kcq. 

Both results are experimental values with no corrections 
for thermal motion or anomalous dispersion, at 20 °C. 
The errors quoted here are weighted mean deviations 
from the weighted mean. As far as we can tell from 
the rather limited number of readings, a histogram of 
the results in Table 1 appears to represent a normal 
distribution. 

Without using the thickness measurements, we can 
calculate the ratio of assigned fringe orders for the 
two wavelengths used at particular points in the section 
patterns. These are collected together in Table 2. The 
ratios were calculated at the minima of the Mo Kcq 
patterns, the corresponding order of the Ag K~I pat- 
terns being calculated by linear interpolation between 
minima. Each ratio is the mean from four positions 
in the thin wedge or from three measurements in the 
thick wedge. 

Table 2. Ratio of  assigned fringe orders 
at particular points in the crystal 

Each thin wedge value is the mean of four measurements and 
each thick wedge value is the mean of three measurements. 

Experiment A B C 
Thin wedge 1.2643 1.2651 1.2639 
Thick wedge 1.2625 1.2636 1-2645 
Weighted mean 

ratio 1.2640 _+ 0.0009 

Table 1. This process, for Mo Kal radiation, gives 
zi0=37.84+ 0.07 #m, in excellent agreement with the 
other values already noted. 

Theoretically (equation 11) A0 should decrease sys- 
tematically with increasing thickness and the order 
ratios too should change systematically if the crystal 
is strained. We therefore must conclude that these 
crystals are effectively perfect. 

Discussion 

It is, in some cases, not possible to compare our results 
with other authors because they have made corrections 
for anomalous dispersion and/or thermal effects with- 
out explicitly stating the correction used. An attempt 
to compare results is given below: 

(1) Hattori et al. (1965): f=8 .58  +0.09 'maximum 
deviation'. The radiation was Mo Kel and/or Ag Kcq. 

(2) Hart (1966): f =  8.52 + 0.04 mean deviation. Ag 
Ka: radiation. The original paper contains a systematic 
error since fringe orders were assigned on the plane 
wave theory. Correction to the spherical wave theory 
(equation 9) yields the above result. 

(3) De Marco & Weiss (1965)" f0=8.70+0.06 
whence ,if Af '=0 .07  and e-M=0-973 we calculate" 
f =  8.53 _+ 0.06 at 20 °C. 

(4) G6ttlicher & W61fel (1959): f =  8.48 _+ 0-02. 
(5) Kato & Tanemura (1967)" f=8.45.  This paper 

contained a systematic error in that the dispersion cor- 
rection was omitted from the refractive index calcula- 
tion. The above result assumes Af '=  0.07. 

It is interesting that the present measurements lie 
approximately 0.6% below the mean of all the previous 
measurements. We have not succeeded in finding any 
adequate explanation for the discrepancy though this 
may become apparent as more high precision measure- 
ments of scattering factors become available. 

The order ratio is a function only of the wavelengths, 
Bragg angles and atomic scattering factors for the two 
radiations. If the scattering factor is independent of 
wavelength the order ratio should be 1.2596 (from 
equations 2 and 6). We must therefore conclude that 
the difference between this ratio and those in Table 2 
is significant and that, at 20 °C 

f (Mo Kcq)/f(Ag Kel) = 1.0035 + 0.0007. 

Residual strains 

In spite of the precautions taken one might be tempted 
to suggest that residual strains could be responsible for 
this surprising result. 

However, close inspection of Table 1 and Table 2 
reveals that there is no systematic variation of either 
AT0 or of the order ratio with crystal thickness. We can 
also obtain measurements of zI0 by subtraction of the 
thin crystal results from the thick crystal results in 
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DISCUSSION 

WEISS (TO HART): (a) These results are most impressive - 
it would be excellent if they are indeed as accurate as claimed. 
We would then have a valuable reference standard. 

(b) There is one point and that was the relatively large 
difference between Mo and Ag measurements. Did you 
consider dispersion corrections? 

HART" Yes, the total correction is ,,,0.4% but the dif- 
ference is still 0.3%. We have good internal consistency in 
all measurements. So far we cannot explain this difference. 
It is the only embarrassing feature. 

BATTERMAN (TO KATO)" Referring to the table of Debye 
temperatures where you compare Professor Borrmann's 
and your own results, you said that Borrmann's measure- 
ments were consistent with 296 o at room temperature and 
330 ° at 20°K. On the other hand, Professor Borrmann in 
his talk gave a value of 290 ° and this appeared to fit over 
the whole temperature range considered. Have you any 
comments? 

KATO" We do not know the true value of the Debye tem- 
perature so I have used the room temperature value derived 
from our own Pendell6sung measurements. Your theoretical 
values are slightly higher than these and it is possible that 
the difference between the room and low-temperature values 
quoted may account for the difference between our value 
and the theoretical at room temperature. 
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Determination of the Atom Form Factor by High Voltage Electron Diffraction 
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A new method of determining the atom form factors from the values of accelerating voltages for which 
the second order Kikuchi line disappears is applied to aluminum, iron, nickel and copper. The accuracy 
of the method is briefly discussed and the numerical results of the atom form factors are given. 

D2"5 

It was reported recently that the second order Kikuchi  
line in electron diffraction disappears at a certain ac- 
celerating voltage Ec due to the many-beam dynamical  
interaction combined with the relativistic change of 
electron mass (Watanabe,  Uyeda & Kogiso, 1968). 
The present authors used the effect for determining 
the Fourier  coefficient of  the crystal potential  for the 
first order V1. Thus the corresponding value of the 
X-ray atom form factor f l  was determined also (Wa- 
tanabe, Uyeda & Fukuhara ,  1968). In the present note, 
an experimental  procedure is described and the error 
in f f  obtained by this method is discussed. The nu- 
merical results for a luminum,  iron, nickel and copper 
are given. 

Thin foils were obtained by electropolishing f rom 
99.9 to 99.99 % metal  plates annealed in vacuum, and 
examined with a 500 kV electron microscope. Diffrac- 

tion patterns were taken from areas of a few microns 
diameter or smaller by the selected area diffraction 
technique at various accelerating voltages. The accel- 
erating voltage of each diffraction pattern was deter- 
mined f rom the analysis of the Kikuchi  pattern with 
an accuracy of 1% (Uyeda, Nonoyama  & Kogiso, 
1965). The value of Ec was determined with an accu- 
racy of 10 kV by examining a series of  diffraction 
patterns taken at various accelerating voltages. The 
values of Ec were measured for the 220 reflexion of iron 
and the 222 reflexion of a luminum,  nickel and copper 
(Table 1). The X-ray atom form factors f f  for the first 
order reflexion were determined using the measured 
values of Ec and known values of f~  for the second 
and higher order reflexions (n = 2, 3 . . . .  ). 

The percentage error in f f  thus obtained can be 
roughly estimated on the basis of  the Bethe's second 


